FIS-dependent trans activation of stable RNA operons of Escherichia coli under various growth conditions.

نویسندگان

  • L Nilsson
  • H Verbeek
  • E Vijgenboom
  • C van Drunen
  • A Vanet
  • L Bosch
چکیده

In Escherichia coli transcription of the tRNA operon thrU (tufB) and the rRNA operon rrnB is trans-activated by the protein FIS. This protein, which stimulates the inversion of various viral DNA segments, binds specifically to a cis-acting sequence (designated UAS) upstream of the promoter of thrU (tufB) and the P1 promoter of the rrnB operon. There are indications that this type of regulation is representative for the regulation of more stable RNA operons. In the present investigation we have studied UAS-dependent transcription activation of the thrU (tufB) operon in the presence and absence of FIS during a normal bacterial growth cycle and after a nutritional shift-up. In early log phase the expression of the operon rises steeply in wild-type cells, whereafter it declines. Concomitantly, a peak of the cellular FIS concentration is observed. Cells in the stationary phase are depleted of FIS. The rather abrupt increase of transcription activation depends on the nutritional quality of the medium. It is not seen in minimal medium. After a shift from minimal to rich medium, a peak of transcription activation and of FIS concentration is measured. This peak gets higher as the medium gets more strongly enriched. We conclude that a correlation between changes of the UAS-dependent activation of the thrU (tufB) operon and changes of the cellular FIS concentration under a variety of experimental conditions exists. This correlation strongly suggests that the production of FIS responds to environmental signals, thereby trans-activating the operon. Cells unable to produce FIS (fis cells) also show an increase of operon transcription in the early log phase and after a nutritional shift-up, albeit less pronounced than that wild-type cells. Presumably it is controlled by the ribosome feedback regulatory system. cis activation of the operon by the upstream activator sequence is apparent in the absence of FIS. This activation is constant throughout the entire growth cycle and is independent of nutritional factors. The well-known growth rate-dependent control, displayed by exponentially growing cells studied under various nutritional conditions, is governed by two regulatory mechanisms: repression, presumably by ribosome feedback inhibition, and stimulation by trans activation. FIS allows very fast bacterial growth.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The mechanism of trans-activation of the Escherichia coli operon thrU(tufB) by the protein FIS. A model.

Transcription of the thrU(tufB) operon is trans-activated by the protein FIS which binds to the promoter upstream activator sequence (UAS). Deletions of parts of the UAS and insertions show that optimal trans-activation requires occupation by FIS of the two FIS-binding regions on the UAS and specific helical positioning of these regions. On the basis of these and other data, a model for the mec...

متن کامل

Activation of Escherichia coli rRNA transcription by FIS during a growth cycle.

rRNA transcription in Escherichia coli is activated by the FIS protein, which binds upstream of rrnp1 promoters and interacts directly with RNA polymerase. Analysis of the contribution of FIS to rrn transcription under changing physiological conditions is complicated by several factors: the wide variation in cellular FIS concentrations with growth conditions, the contributions of several other ...

متن کامل

Regulation by nucleoid-associated proteins at the Escherichia coli nir operon promoter.

The Escherichia coli K-12 nir operon promoter can be fully activated by binding of the regulator of fumarate and nitrate reduction (FNR) to a site centered at position -41.5 upstream of the transcript start, and this activation is modulated by upstream binding of the integration host factor (IHF) and Fis (factor for inversion stimulation) proteins. Thus, transcription initiation is repressed by...

متن کامل

Robust translation of the nucleoid protein Fis requires a remote upstream AU element and is enhanced by RNA secondary structure.

Synthesis of the Fis nucleoid protein rapidly increases in response to nutrient upshifts, and Fis is one of the most abundant DNA binding proteins in Escherichia coli under nutrient-rich growth conditions. Previous work has shown that control of Fis synthesis occurs at transcription initiation of the dusB-fis operon. We show here that while translation of the dihydrouridine synthase gene dusB i...

متن کامل

Proteome analysis of factor for inversion stimulation (Fis) overproduction in Escherichia coli.

The factor-for-inversion stimulation protein (Fis) is a global regulatory protein in Escherichia coli that activates ribosomal RNA (rRNA) transcription by binding to three upstream activation sites of the rRNA promoter and enhances transcription 5- to 10-fold in vivo. Fis overexpression results in different effects on cell growth depending on nutrient conditions. Differential proteome analysis ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 174 3  شماره 

صفحات  -

تاریخ انتشار 1992